Optimal Aggregation of FcεRI with a Structurally Defined Trivalent Ligand Overrides Negative Regulation Driven by Phosphatases
نویسندگان
چکیده
To investigate why responses of mast cells to antigen-induced IgE receptor (FcεRI) aggregation depend nonlinearly on antigen dose, we characterized a new artificial ligand, DF3, through complementary modeling and experimentation. This ligand is a stable trimer of peptides derived from bacteriophage T4 fibritin, each conjugated to a hapten (DNP). We found low and high doses of DF3 at which degranulation of mast cells sensitized with DNP-specific IgE is minimal, but ligand-induced receptor aggregation is comparable to aggregation at an intermediate dose, optimal for degranulation. This finding makes DF3 an ideal reagent for studying the balance of negative and positive signaling in the FcεRI pathway. We find that the lipid phosphatase SHIP and the protein tyrosine phosphatase SHP-1 negatively regulate mast cell degranulation over all doses considered. In contrast, SHP-2 promotes degranulation. With high DF3 doses, relatively rapid recruitment of SHIP to the plasma membrane may explain the reduced degranulation response. Our results demonstrate that optimal secretory responses of mast cells depend on the formation of receptor aggregates that promote sufficient positive signaling by Syk to override phosphatase-mediated negative regulatory signals.
منابع مشابه
Modeling the early signaling events mediated by FcεRI
We present a detailed mathematical model of the phosphorylation and dephosphorylation events that occur upon ligand-induced receptor aggregation, for a transfectant expressing FcεRI, Lyn, Syk and endogenous phosphatases that dephosphorylate exposed phosphotyrosines on FcεRI and Syk. Through model simulations we show how changing the ligand concentration, and consequently the concentration of re...
متن کاملRictor negatively regulates high-affinity receptors for IgE-induced mast cell degranulation.
Rictor is a regulatory component of the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). We have previously demonstrated that rictor expression is substantially downregulated in terminally differentiated mast cells as compared with their immature or transformed counterparts. However, it is not known whether rictor and mTORC2 regulate mast cell activation. In this article, we show that m...
متن کاملp66Shc is a negative regulator of FcεRI-dependent signaling in mast cells.
Aggregation of FcεRI on mast cells activates signaling pathways, resulting in degranulation and cytokine release. Release of mast cell-derived inflammatory mediators is tightly regulated by the interplay of positive and negative signals largely orchestrated by adapter proteins. Among these, the Shc family adapter p52Shc, which couples immunoreceptors to Ras activation, positively regulates FcεR...
متن کاملNotch signaling enhances FcεRI-mediated cytokine production by mast cells through direct and indirect mechanisms.
Th2-type cytokines and TNF-α secreted by activated mast cells upon cross-linking of FcεRI contribute to the development and maintenance of Th2 immunity to parasites and allergens. We have previously shown that cytokine secretion by mouse mast cells is enhanced by signaling through Notch receptors. In this study, we investigated the molecular mechanisms by which Notch signaling enhances mast cel...
متن کاملEffect of Insulated Up and Down Lid Motion on the Heat Transfer of a Lid-Driven Cavity with an attached fin
This study investigates the effect of lid motion on the optimal characteristics a thin rectangular fin attached on the hot wall of a square lid-driven cavity with active vertical walls. The optimal fin position is studied for Richardson numbers of 0.1-10. The effect of mounting a rectangular fin with a thermal conductivity of 1 and 1000 on minimization and maximization of heat transfer through ...
متن کامل